A guanine to adenine point mutation results in an arginine (R) to histidine (H) substitution in FcgammaRIIa at residue 131 that strongly impacts receptor function. This FcgammaRIIa polymorphism is mostly typed by allele-specific polymerase chain reactions (PCR) or in functional assays, dependent on ligand binding. Both types of methods are laborious, time consuming, and not readily available in routine laboratories. We generated a panel of human antibodies against FcgammaRII, and one of them, MDE-9, selectively recognized the FcgammaRIIa-H131 allotype. MDE-9 was applicable to detect FcgammaRIIa-H131 in both flow cytometry and immunohistochemistry. MDE-9 was used to develop an FcgammaRIIa allotyping method based on flow cytometry. In a "single-tube assay", FITC-labeled MDE-9 (specific for FcgammaRIIa-H131) and Cy3-labeled mAb 41H16 (specific for FcgammaRIIa-R131) were added to 50 mul samples of whole blood. The results of flow cytometric FcgammaRIIa allotyping correlated completely with PCR genotyping. This novel allotyping assay should facilitate the screening of patients in a routine diagnostic setting. In addition, a combination of MDE-9 and 41H16 can be used in FcgammaRIIa-H/H131 homozygous individuals to detect FcgammaRIIa and FcgammaRIIb surface expression on monocytes. This is an important application of these antibodies because, to this day, no antibodies were available to specifically study the surface expression of FcgammaRIIb.