Genomic amplification of regions on chromosome arm 5p has been observed frequently in small cell lung cancer (SCLC), implying the presence of multiple oncogenes on this arm. Although conventional comparative genomic hybridization (CGH) detects gross chromosomal copy number changes, gene discovery requires a higher-resolution approach in order to identify regions of alteration precisely. To identify candidate genes on this chromosome arm, we developed a high-resolution, 10-clone-per-megabase bacterial artificial chromosome CGH array for 5p and examined a panel of 15 SCLC cell lines. Utilization of this CGH array has allowed the fine-mapping of breakpoints to regions as small as 200 kb in a single experiment. In addition to reporting our observations of aberrations at the well-characterized SKP2 and TERT loci, we describe the identification of microdeletions that have escaped detection by conventional screens and the identification TRIO and ANKH as novel putative oncogenes.