Target-site preferences of Sleeping Beauty transposons

J Mol Biol. 2005 Feb 11;346(1):161-73. doi: 10.1016/j.jmb.2004.09.086. Epub 2004 Dec 30.

Abstract

The Sleeping Beauty (SB) transposon is a Tc1/mariner family transposon that has applications in vertebrate animals for gene transfer, gene-tagging, and human gene therapy. In this study, we analyzed the target-site preferences of the SB transposon. At the genomic level, integration of SB transposons with respect to genes (exons and introns) and intergenic regions appears fairly random but not on a micro-scale. Although there appears to be a consensus sequence around the vicinity of the target sites, the primary sequence is not the determining factor for target selection. When integrations were examined over a limited topography, the sites used most often for integration did not match the consensus sequence. Rather, a unique deformation inherent in the sequence may be a recognition signal for target selection. The deformation is characterized by an angling of the target site such that the axis around the insertion site is off-center, the rotation of the helix (twisting) is non-uniform and there is an increase in the distance between the central base-pairs. Our observations offer several hypothetical insights into the transposition process. Our observations suggest that particular deformations of the double helix predicted by the V(step) algorithm can distinguish TA sites that vary by about 16-fold in their preferences for accommodating insertions of SB transposons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • AT Rich Sequence / genetics
  • Base Sequence
  • DNA / chemistry
  • DNA / genetics*
  • DNA / metabolism*
  • DNA Transposable Elements / genetics*
  • Humans
  • Mutagenesis, Insertional
  • Nucleic Acid Conformation
  • Recombination, Genetic / genetics*
  • Substrate Specificity
  • Transposases / metabolism

Substances

  • DNA Transposable Elements
  • DNA
  • Transposases
  • sleeping beauty transposase, human