The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. Pcf11, an essential component of the mRNA cleavage factor IA, contains a CTD-interaction domain that binds in a phospho-dependent manner to the heptad repeats within the RNA polymerase II CTD. We show here that the phosphorylated CTD exists as a dynamic disordered ensemble in solution and, by induced fit, it assumes a structured conformation when bound to Pcf11. In addition, we detected cis-trans populations for the CTD prolines, and found that only the all-trans form is selected for binding. These data suggest that the recognition of the CTD is regulated by independent site-specific modifications (phosphorylation and proline cis-trans isomerization) and, probably, by the local concentration of suitable binding sites.