Thiol-capped water-soluble PbS nanocrystals (NCs) stabilized with 1-thioglycerol, dithioglycerol, or a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were prepared via one-stage synthesis at room temperature. We found that NCs stabilized with a TGL/DTG mixture show efficient and stable infrared photoluminescence centered in the second "biological window" (1050-1200 nm). Under optimized conditions, full width at half-maximum of the PL emission peak was from 70 to 100 nm. PbS NCs were stable to precipitation and aggregation for the time period from 2 to 3 months when stored in the dark under room temperature. Room-temperature photoluminescence quantum efficiency of NCs was from 7 to 10%. When NCs were stored at 37 degrees C, their PL emission red-shifted, consistent with the NC growth.