The necessity to respond to the level of fixed nitrogen and external oxygen concentrations and to provide sufficient energy for nitrogen fixation imposes common regulatory principles amongst diazotrophs. The NifL-NifA system in Azotobacter vinelandii integrates the signals of redox, fixed-nitrogen and carbon status to regulate nif transcription. Multidomain signalling interactions between NifL and NifA are modulated by redox changes, ligand binding and interaction with the signal-transduction protein GlnK. Under adverse redox conditions (excess oxygen) or when fixed nitrogen is in excess, NifL forms a complex with NifA in which transcriptional activation is prevented. Oxidized NifL forms a binary complex with NifA to inhibit NifA activity. When fixed nitrogen is in excess, the non-covalently modified form of GlnK interacts with NifL to promote the formation of a GlnK-NifL-NifA ternary complex. When the cell re-encounters favourable conditions for nitrogen fixation, it is necessary to deactivate the signals to ensure that the NifL-NifA complex is dissociated so that NifA is free to activate transcription. This is achieved through interactions with 2-oxoglutarate, a key metabolic signal of the carbon status, which binds to the N-terminal GAF (cGMP-specific and stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domain of NifA.