Binding of non-natural 3'-nucleotides to ribonuclease A

FEBS J. 2005 Feb;272(3):744-55. doi: 10.1111/j.1742-4658.2004.04511.x.

Abstract

2'-Fluoro-2'-deoxyuridine 3'-phosphate (dU(F)MP) and arabinouridine 3'-phosphate (araUMP) have non-natural furanose rings. dU(F)MP and araUMP were prepared by chemical synthesis and found to have three- to sevenfold higher affinity than uridine 3'-phosphate (3'-UMP) or 2'-deoxyuridine 3'-phosphate (dUMP) for ribonuclease A (RNase A). These differences probably arise (in part) from the phosphoryl groups of 3'-UMP, dU(F)MP, and araUMP (pK(a) = 5.9) being more anionic than that of dUMP (pK(a) = 6.3). The three-dimensional structures of the crystalline complexes of RNase A with dUMP, dU(F)MP and araUMP were determined at < 1.7 A resolution by X-ray diffraction analysis. In these three structures, the uracil nucleobases and phosphoryl groups bind to the enzyme in a nearly identical position. Unlike 3'-UMP and dU(F)MP, dUMP and araUMP bind with their furanose rings in the preferred pucker. In the RNase A.araUMP complex, the 2'-hydroxyl group is exposed to the solvent. All four 3'-nucleotides bind more tightly to wild-type RNase A than to its T45G variant, which lacks the residue that interacts most closely with the uracil nucleobase. These findings illuminate in atomic detail the interaction of RNase A and 3'-nucleotides, and indicate that non-natural furanose rings can serve as the basis for more potent inhibitors of catalysis by RNase A.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Crystallography, X-Ray
  • Models, Molecular
  • Molecular Structure
  • Nuclear Magnetic Resonance, Biomolecular
  • Nucleotides / chemistry
  • Nucleotides / metabolism*
  • Protein Binding
  • Spectrometry, Mass, Electrospray Ionization

Substances

  • Nucleotides