Luminescent complexes of Re(I) and Ru(II) with appended macrocycle groups derived from 5,6-dihydroxyphenanthroline: cation and anion binding

Dalton Trans. 2005 Feb 7:(3):528-36. doi: 10.1039/b416293e. Epub 2005 Jan 5.

Abstract

A range of ligands in which a macrocyclic unit is fused to a 1,10-phenanthroline unit has been prepared starting from 5,6-dihydroxyphenanthroline. The ligands are L1 in which the pendant ligand is 18-crown-6; L2, in which the pendant ligand is benzo-24-crown-8; and L(3), in which the macrocycle contains two carboxamide units. Ligands L1 and L2 can bind Group 1 and 2 metal cations in their crown-ether cavities; L3 contains two H-bond (amide) donors and is suitable for anion-binding. Luminescent complexes of the form [Ru(bipy)2L]2+, [ReL(CO)3Cl] and [RuL(CN)4]2- were prepared and some were structurally characterised; their interactions with various guest species were investigated by luminescence and NMR spectroscopy. For complexes with the crown ethers (L1 and L2), binding of K+ was rather weak, but the electrostatic effect due to the charge on the host complex was clear with [RuL1(CN)4]2- binding K+ more strongly than [Ru(bipy)2L1]2+. Binding to the pendant crown ethers was much stronger with Ba2+, and both [ReL1(CO)3Cl] and [ReL2(CO)3Cl] showed substantial luminescence quenching in MeCN on addition of Ba2+ ions, with binding constants of 4.5 x 10(4) M(-1) for [ReL1(CO)3Cl]/Ba2+ and 1.3 x 10(5) M(-1) for [ReL2(CO)3Cl]/Ba2+. Complexes [Ru(bipy)2L3]2+ and [ReL3(CO)3Cl], due to their H-bond donor sites, showed binding of dihydrogenphosphate to the macrocycle. Whereas [ReL3(CO)3Cl] showed 1 : 1 binding with (H2PO4)- in dmso with a binding constant of 65 M(-1), [Ru(bipy)2L3]2+ showed 1 : 2 binding, with microscopic association constants of ca. 1 x 10(6) and 1.6 x 10(6) M(-1) in MeCN. The fact that K2 > K1 suggests a cooperative interaction whereby binding of the first anion makes binding of the second one easier to an extent which overcomes electrostatic effects, and a model for this is proposed which also accounts for the substantial increase in luminescence from [Ru(bipy)2L3]2+ (5-fold enhancement) when the second (H2PO4)- anion binds. Both [Ru(bipy)2L3]2+ and [ReL3(CO)3Cl] undergo complete luminescence quenching and a change in colour to near-black in the presence of (anhydrous) fluoride in MeCN, probably due to deprotonation of the carboxamide group. These changes are however irreversible on a long timescale and lead to slow decomposition.