The dmd gene of bacteriophage T4 is required for the stability of late-gene mRNAs. When this gene is mutated, late genes are globally silenced because of rapid degradation of their mRNAs. Our previous work suggested that a novel Escherichia coli endonuclease, RNase LS, is responsible for the rapid degradation of mRNAs. In this study, we demonstrated that rnlA (formerly yfjN) is essential for RNase LS activity both in vivo and in vitro. In addition, we investigated a role of RNase LS in the RNA metabolism of E. coli cells under vegetative growth conditions. A mutation in rnlA reduced the decay rate of many E. coli mRNAs, although there are differences in the mutational effects on the stabilization of different mRNAs. In addition, we found that a 307-nucleotide fragment with an internal sequence of 23S rRNA accumulated to a high level in rnlA mutant cells. These results strongly suggest that RNase LS plays a role in the RNA metabolism of E. coli as well as phage T4.