Background & aims: Recently, both asymmetrical dimethylarginine and IL-6 have been suggested to be associated with the induction and severity of single and multiple organ dysfunction. The aims of the present study were to elucidate if these factors were increased in an ischemia reperfusion (IR) model and whether pre-operative carbohydrate supplementation can reduce the risk factors along with the IR injury.
Methods: One group of male Wistar rats was fasted for 16 h (water ad libitum) prior to clamping the superior mesenteric artery (IR fasted n=14). A second group had ad libitum access to a carbohydrate solution prior to clamping (IR fasted CHO group n=11). Sham-fasted animals, which only received laparotomy and no clamping, served as controls (n=4).
Results: Plasma urea and ALAT activity were both increased in the IR fasted animals when compared to the sham rats (P=0.007 and P<0.02, respectively). Furthermore, it was shown that IR fasted rats had increased ADMA and IL-6 concentration in plasma when compared to sham animals (P<0.02). Moreover, the GSH level in lung was significantly decreased in the IR fasted animals (P=0.014). IR CHO supplemented showed no significant increase of ALAT activity and decrease of lung GSH. Furthermore, significantly lower plasma urea, ADMA and IL-6 concentration was seen in the IR CHO supplemented group when compared to the IR fasted rats (P=0.028, P<0.01 and P<0.02, respectively). The liver glycogen concentration in IR fasted rats was 48% of that IR rats supplemented the carbohydrate mixture.
Conclusion: The present rat intestinal ischemia reperfusion model not only induces organ injury indicated by the classical parameters such as plasma urea and ALAT activity, but also increased plasma IL-6 and ADMA and decreased lung GSH concentration in IR fasted rats. Pre-operative supplementation with the carbohydrate mixture significantly lowered the plasma urea, IL-6 and ADMA concentrations and maintained lung GSH concentration. This indicates that pre-operative carbohydrate supplementation reduces post-operative organ injury.