Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations

Microb Ecol. 2004 Oct;48(3):338-48. doi: 10.1007/s00248-003-1067-y. Epub 2004 Aug 24.

Abstract

An emerging body of evidence indicates a role for plant genotype as a determinant of the species and genetic composition of the saprophytic microbial community resident to the rhizosphere. In this study, experiments were conducted to determine the capacity of five different wheat cultivars to enhance resident populations and support introduced strains of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent pseudomonads, a group of bacteria known to provide biological control of several soilborne diseases. When soils were cropped with three successive 28-day growth cycles of wheat, the 2,4-DAPG-producing strains were consistently recovered from the rhizosphere of the cultivar Lewjain, and commonly were present at populations higher than those recovered from other wheat cultivars. Based on restriction fragment length polymorphism and sequence analyses of phlD, a key gene involved in 2,4-DAPG production, two previously undefined phlD+ genotypes, referred to as genotypes PfZ and PfY, were discovered. Wheat cultivar Lewjain was the primary source of genotype PfY while cultivar Penawawa yielded the majority of genotype PfZ. Based on 16S rDNA sequence analysis, both new phlD genotypes were classified as P. fluorescens. Comparison of the rhizosphere competence of 2,4-DAPG-producing P. fluorescens Q2-87 (genotype B) and P. fluorescens LR3-A28 (genotype PfY) showed that both strains persisted at similar populations in the rhizosphere of all cultivars tested over a 30 day period when introduced as a seed inoculant. However, when strain LR3-A28 was applied as a soil inoculant, this strain was recovered at higher populations from the rhizosphere of wheat cultivar Lewjain than from the rhizospheres of two other cultivars. No cultivar effects were shown for strain Q2-87. Collectively, these results add further to evidence indicating a degree of specificity in interactions between plant cultivars and specific members of the saprophytic microbial community. Furthermore, as 2,4-DAPG-producing fluorescent Pseudomonas spp. have a central role in the spontaneous reduction in severity of take-all disease of wheat in response to continuous wheat monoculture, we postulate that the use of specific cultivars, such as Lewjain, which possess a superior capacity to enhance resident soil populations of these bacteria may have potential to reduce the length of the monoculture period required to induce natural suppressiveness of soils toward this disease.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / physiology
  • Biodiversity
  • Fluorescence
  • Genetic Variation
  • Genotype
  • Phloroglucinol / analogs & derivatives
  • Phloroglucinol / metabolism*
  • Phylogeny
  • Population Density
  • Pseudomonas / genetics
  • Pseudomonas / metabolism
  • Pseudomonas / physiology*
  • Pseudomonas fluorescens / physiology
  • Soil Microbiology
  • Triticum / genetics
  • Triticum / microbiology*

Substances

  • Bacterial Proteins
  • PhlD protein, Pseudomonas
  • 2,4-diacetylphloroglucinol
  • Phloroglucinol