Purpose: To evaluate multi- and single-detector row computed tomographic (CT) depiction of anatomic landmarks of temporal bone.
Materials and methods: Institutional review board approval and written informed consent were obtained. In 50 temporal bones, transverse and coronal single-detector row CT images were compared with transverse and reformatted coronal multi-detector row CT images obtained of additional 50 temporal bones. Two radiologists evaluated images. Visibility of 50 landmarks was scored with a five-point quality rating scale. Fisher exact test, kappa statistics, and Mann-Whitney U test were used to evaluate imaging technique and landmark visibility.
Results: In delineating landmarks, total interobserver agreement was higher (P < .001) for transverse multi- than for single-detector row CT images. In 60% of landmarks, interobserver agreement was higher (P < .001) for transverse multi- than for single-detector row CT images. In 20% of landmarks, there was no difference, and in another 20% of landmarks, interobserver agreement was higher (P < .01) for single-detector row CT. Total interobserver agreement was higher (P < .01) for coronal multi-detector row reformations than for coronal single-detector row images. In 58% of landmarks, interobserver agreement was higher (P < .001) for coronal multi-detector row reformations than for coronal single-detector row images, while there was no difference in 8%. In 34% of landmarks, interobserver agreement was higher (P < .001) for coronal single-detector row images. Frequency of detected landmarks was higher for transverse (82%) and coronal (88%) multi-detector row images than for corresponding single-detector row images. In 72% of landmarks, transverse multi-detector row images were (P < .05) superior to corresponding transverse single-detector row images in landmark delineation. In 56% of landmarks, reformatted coronal multi-detector row images were (P < .05) superior to coronal single-detector row images in landmark delineation.
Conclusion: Multi-detector row CT images, including reformations, better delineate temporal bone anatomy than do single-detector row CT images.
(c) RSNA, 2005.