Human epidermal keratinocytes, that have been growth-arrested by removal of epidermal growth factor from the culture medium, are stimulated to proliferate by all-trans retinoic acid (RA). The same treatment inhibits the onset of differentiated features and reduces cell-substrate adhesion. In the present study we show that the same treatment results in a decrease in total cell-associated Ca2+ as measured by changes in the amount of 45Ca2+ bound to cells at equilibrium following RA treatment and by a decrease in intracellular free Ca2+ levels as measured with the Ca(2+)-sensitive dye, Indo-1. The alterations in Ca2+ levels were evident within an hour after RA treatment, were in the range of 30-35% and occurred over the same RA concentration range that stimulated proliferation (i.e., 0.25-1.0 micrograms/ml). When the extracellular Ca2+ concentration was elevated from the normal level of 0.15-1.4 mM, intracellular free Ca2+ increased by a factor of 2 while total cell-associated Ca2+ increased approximately 6-fold. Even under conditions of high extracellular Ca2+, RA was able to reduce cell-associated and intracellular free Ca2+. These data indicate that RA has the capacity to lower Ca2+ levels in keratinocytes concomitantly with its effects on biological behavior.