Purpose: A method to create an extraluminal femoropopliteal bypass graft using endovascular techniques was evaluated in situ on cadaver extremities in an attempt to develop a minimally invasive alternative technique for the management of infrainguinal occlusive arterial disease.
Methods: The endovascular placement of an extraluminal femoropopliteal bypass graft was undertaken in 5 cadaver legs. Following percutaneous access to the popliteal artery (PA) or common femoral artery (CFA), a Rosch-Uchida needle was used to perforate the vascular wall, followed by the creation of an extraluminal tract using a looped wire and catheter. Once the desired level was reached the needle was again used to perforate the vascular wall of the proximal superficial femoral artery (SFA) or PA depending on the access used. Self-expanding expanded polytetrafluoroethylene (ePTFE) stent-grafts were then deployed to establish the extraluminal femoropopliteal bypass connecting the two arterial puncture sites. Following dilatation of the stent-graft, angiography was performed to assess the endoprostheses and to look for contrast leaks.
Results: Technical success was achieved in all 5 legs. Procedure time varied from 15 to 30 min. The angiographic studies performed immediately after completion of the bypass procedure showed patency of the grafts with no evidence of kinking or leakage in any of the cases.
Conclusion: This study has proved that the endovascular placement of an extraluminal femoropopliteal bypass graft in human cadaver legs using endovascular techniques under fluoroscopic control is technically feasible.