Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a Chinese family

J Mol Med (Berl). 2005 Mar;83(3):203-8. doi: 10.1007/s00109-005-0638-4. Epub 2005 Feb 22.

Abstract

Hypokalemic periodic paralysis (HypoPP) is an autosomal dominant disorder which is characterized by periodic attacks of muscle weakness associated with a decrease in the serum potassium level. The skeletal muscle calcium channel alpha-subunit gene CACNA1S is a major disease-causing gene for HypoPP, however, only three specific HypoPP-causing mutations, Arg528His, Arg1,239His and Arg1,239Gly, have been identified in CACNA1S to date. In this study, we studied a four-generation Chinese family with HypoPP with 43 living members and 19 affected individuals. Linkage analysis showed that the causative mutation in the family is linked to the CACNA1S gene with a LOD score of 6.7. DNA sequence analysis revealed a heterozygous C to G transition at nucleotide 1,582, resulting in a novel 1,582C-->G (Arg528Gly) mutation. The Arg528Gly mutation co-segregated with all affected individuals in the family, and was not present in 200 matched normal controls. The penetrance of the Arg528Gly mutation was complete in male mutation carriers, however, a reduced penetrance of 83% (10/12) was observed in female carriers. No differences were detected for age-at-onset and severity of the disease (frequency of symptomatic attacks per year) between male and female patients. Oral intake of KCl is effective in blocking the symptomatic attacks. This study identifies a novel Arg528Gly mutation in the CACNA1S gene that causes HypoPP in a Chinese family, expands the spectrum of mutations causing HypoPP, and demonstrates a gender difference in the penetrance of the disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Age of Onset
  • Amino Acid Sequence
  • Animals
  • Arginine / genetics
  • Arginine / metabolism
  • Asian People / genetics*
  • Base Sequence
  • Calcium Channels / genetics*
  • Calcium Channels, L-Type
  • Child, Preschool
  • China
  • Female
  • Humans
  • Hypokalemic Periodic Paralysis / genetics*
  • Hypokalemic Periodic Paralysis / physiopathology*
  • Male
  • Middle Aged
  • Molecular Sequence Data
  • Mutation / genetics*
  • Pedigree
  • Sequence Alignment

Substances

  • CACNA1S protein, human
  • Calcium Channels
  • Calcium Channels, L-Type
  • Arginine