Purpose: To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs).
Materials and methods: Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively.
Results: Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P < .05). For carboxydextran-coated SPIOs, larger particle size resulted in improved cellular uptake (65 nm, 4.37 microg +/- 0.08 Fe per 100 000 cells; 17 nm, 2.14 microg +/- 0.06 Fe per 100 000 cells; P < .05). Despite larger particle size, dextran-coated iron oxides did not differ from large carboxydextran-coated particles (150 nm, 3.81 microg +/- 0.46 Fe per 100 000 cells; 65 nm, 4.37 microg +/- 0.08 Fe per 100 000 cells; P > .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach.
Conclusion: Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods.
(c) RSNA, 2005.