We studied global gene expression in three melanoma cell lines with the most common and potent V600E mutation in the B-RAF gene-four cell lines with a common Q61R mutation in the N-RAS gene and three cell lines with no mutations using human HG-U133A 2.0 micro-arrays with 22 277 transcripts. Data analysis using stringent criteria revealed several upregulated and downregulated genes in cell lines with B-RAF and N-RAS mutations compared with cell lines without mutations. We found 29 genes specifically upregulated and 32 genes downregulated in cell lines with B-RAF mutations, whereas 70 genes were upregulated and 39 downregulated in cell lines with N-RAS mutations; 11 genes showed overlapping upregulation and 45 downregulation. The micro-array data for nine selected genes were validated by the real-time PCR technique. Expression of a large number of genes, that encode members or regulators of the RAS/RAF/MEK/ERK pathways or are involved in metastasis or invasion, was affected in cell lines with mutations in B-RAF and N-RAS. Upregulated genes in cell lines with mutations included dual-specificity phosphatase 6 (DUSP6), sprouty 2 (SPRY2), v-akt murine thymoma viral oncogene homolog 3 (AKT3) and matrix metalloproteinase 14 (MMP14); downregulated genes included interleukin 18 (IL18), Krüppel-like factor 5 (KLF5) and inhibitor of DNA binding 2 (ID2). Our results, though carried on cell lines, provide a novel insight into the effect of mutations in the B-RAF and N-RAS genes on global gene expression in melanoma and highlight the complexity of mechanisms involved in tumour initiation and maintenance.