Hereditary macular dystrophies are degenerative diseases of the central area of the retina associating primary anomalies of the retinal pigment epithelium and sensory retina. These conditions, whose hallmark is a loss of visual acuity, are a major cause of blindness and affect patients at all ages. Macular dystrophies group diseases that are heterogenous at the genetic level, as well as at the clinical, histological and physiopathological levels. Monogenic macular dystrophies are rare autosomal dominant conditions, with the exception of Stargardt disease in its typical form, which is not only relatively frequent but is also inherited as an autosomal recessive trait. During the last few years, the molecular bases of these conditions have begun to be elucidated with the identification of several responsible genes. For some macular dystrophies, this new information has confirmed pre-existing hypotheses on their pathophysiology, but for others, the discovery of the disease gene has added further complexity to the disease process. Two contradictory concepts were particularly highlighted by these genetic studies. Several phenotypes previously described as different clinical entities were brought together by the identification of mutations in the same gene, and converselyome conditions that were clinically assigned the same name, often heterogeneous at the clinical level, appeared genetically and physiopathologically heterogeneous. In addition, it is worth noting that the monogenic macular dystrophy genes were often regarded as potential factors for susceptibility to age-related macular degenerations. However, to date, only ABCA4 mutations have been associated with a minority of this frequent multifactorial condition. The aim of this article is to give a progress report on the monogenic macular dystrophy genes and to review current knowledge concerning the pathophysiology of these conditions.