Many studies have reported chromosome 22 as being abnormal in astrocytic tumors. In an attempt to map precisely the abnormal region or regions that potentially harbor tumor-suppressor genes or oncogenes, we constructed a chromosome 22 tile path array covering 82% of 22q with the use of 441 chromosome 22 clones. A 10-Mb whole-genome array consisting of 270 clones from all autosomes was included in the array. A total of 126 astrocytic tumors-5 diffuse astrocytomas (A), 29 anaplastic astrocytomas (AA), and 92 glioblastomas (GB)-were examined for chromosome 22 alterations both by microsatellite analysis (using 28 markers to identify allelic imbalance) and with the tile path array. The results showed that chromosome 22 alterations in astrocytic tumors could be complex. A number of tumors had a combination of deletions with and without reduplication of the retained chromosome, as well as copy number gains and amplifications. In two glioblastomas, overlapping homozygous deletions were identified that involved three genes (DEPDC5/KIAA0645, YWHAH, C22ORF24/HSN44A4A). The terminal region telomeric to the clone RP3-398C22 appeared to be the most frequently deleted region. The estimated incidence of any chromosome 22 alteration was 5% in A, 33% in AA, and 38% in GB. This study demonstrated the advantages of combining array comparative genomic hybridization and microsatellite analysis in elucidating complex genomic rearrangements in primary human tumor tissue. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html.
Copyright 2005 Wiley-Liss, Inc.