Distributed feedback microstructures play a fundamental role in confining and manipulating light to obtain lasing in media with gain. Here, we present an innovative array of organic, color-tunable microlasers which are intrinsically phase locked. Dye-doped helixed liquid crystals were embedded within periodic, polymeric microchannels sculptured by light through a single-step process. The helical superstructure was oriented along the microchannels; the lasing was observed along the same direction at the red edge of the stop band. Several physical and technological advantages arise from this engineered heterostructure: a high quality factor of the cavity, ultralow lasing threshold, and thermal and electric control of the lasing wavelength and emission intensity. This level of integration of guest-host systems, embedded in artificially patterned small sized structures, might lead to new photonic chip architectures.