Centrality dependence of charm production from a measurement of single electrons in Au+Au collisions at sqrt[s(NN)]=200 GeV

Phys Rev Lett. 2005 Mar 4;94(8):082301. doi: 10.1103/PhysRevLett.94.082301. Epub 2005 Mar 2.

Abstract

The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4<p(T)<4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt[s(NN)]=200 GeV. Contributions from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X0) converter into the PHENIX acceptance and are statistically removed. The subtracted nonphotonic electron spectra are primarily due to the semileptonic decays of hadrons containing heavy quarks, mainly charm at lower p(T). For all centralities, the charm production cross section is found to scale with the nuclear overlap function, T(AA). For minimum-bias collisions the charm cross section per binary collision is N(cc )/T(AA)=622+/-57(stat)+/-160(syst) microb.