A previous study showed that the novel tetrazolephtalimide derivative LASSBio 552 (2-4-[3-(1H-1,2,3,4-tetraazol-5-yl)propoxy]phenethyl-1,3-isoindolinedione) prevents LTD(4)-evoked tracheal contraction. This led us to examine the putative anti-inflammatory effect of LASSBio 552 in comparison with the leukotriene CysLT(1) receptor antagonist zafirlukast using a model of allergic pleurisy in rats. Treatment with either LASSBio 552 (24-96 micromol/kg, i.p.) or zafirlukast (9-72 micromol/kg, i.p.), 1 h before challenge, inhibited eosinophil and mononuclear cell influx into the pleural cavity 24 h post-challenge, but failed to alter the increased levels of eotaxin, plasma leakage, mast cell degranulation and neutrophil infiltration noted 6 h post-challenge. CD4(+) T cell recruitment 24 h post-challenge was also sensitive to LASSBio 552. This treatment failed to alter cysteinyl leukotriene production at 6 h, but clearly inhibited the phenomenon 24 h and 48 h post-challenge. In in vitro settings LASSBio 552 inhibited allergen-evoked cysteinyl leukotriene generation from isolated mast cells, while histamine release remained unchanged. It also slightly inhibited cysteinyl leukotriene production by eosinophils and mononuclear cells triggered by Ca(+2) ionophore A23187. A leukotriene CysLT(1) receptor transfected cell-based assay revealed that LASSBio 552 did not prevent LTD(4)-evoked Ca(+2) influx, indicating that it was not a leukotriene CysLT(1) receptor antagonist. These findings indicate that LASSBio 552 is able to inhibit eosinophil influx triggered by allergen chalenge in a mechanism at least partially associated with suppression of CD4(+) T cell influx and cysteinyl leukotriene production.