We here show that GLP-1 and the long-acting GLP-1 analogue, liraglutide, interfere with diabetes-associated apoptotic processes in the beta-cell. Studies using primary neonatal rat islets showed that native GLP-1 and liraglutide inhibited both cytokine- and free fatty acid-induced apoptosis in a dose-dependent manner. The anti-apoptotic effect of liraglutide was mediated by the GLP-1 receptor as the specific GLP-1 receptor antagonist, exendin(9-39), blocked the effects. The adenylate cyclase activator, forskolin, had an anti-apoptotic effect similar to those of GLP-1 and liraglutide indicating that the effect was cAMP-mediated. Blocking the PI3 kinase pathway using wortmannin but not the MAP kinase pathways by PD98059 inhibited the effects of liraglutide. In conclusion, GLP-1 receptor activation has anti-apoptotic effect on both cytokine, and free fatty acid-induced apoptosis in primary islet-cells, thus suggesting that the long-acting GLP-1 analogue, liraglutide, may be useful for retaining beta-cell mass in both type 1 and type 2 diabetic patients.