Sleep and sleep disorders have traditionally been viewed from a polysomnographic perspective. Although these methods provide information on the timing of various stages of sleep and wakefulness, they do not provide information regarding function in brain structures that have been implicated in the generation of sleep and that may be abnormal in different sleep disorders. Functional neuroimaging methods provide information regarding changes in brain function across the sleep-wake cycle that provides information for models of sleep dysregulation in a variety of sleep disorders. Early studies show reliable increases in function in limbic and anterior paralimbic cortex in rapid eye movement (REM) sleep and decreases in function in higher-order cortical regions in known thalamocortical networks during non-REM sleep. Although most of the early work in this area has been devoted to the study of normal sleep mechanisms, a collection of studies in diverse sleep disorders such as sleep deprivation, depression, insomnia, dyssomnias, narcolepsy, and sleep apnea suggest that functional neuroimaging methods have the potential to clarify the pathophysiology of sleep disorders and to guide treatment strategies.