Conclusion: As we demonstrated previously that transcription of alpha-ENaC was correlated with oxygen tension in the culture medium, this study suggests that the increase in alpha-ENaC expression observed under ALI conditions may result from greater oxygenation of ME cells.
Objective: The physiology of the middle ear (ME) is primarily concerned with keeping the cavities fluid-free, to allow transmission of sound vibrations from the eardrum to the inner ear. ME epithelial cells are thought to play a key role in this process as they actively absorb sodium and water in order to clear any excess fluid present in the cavities.
Material and methods: As an air-liquid interface (ALI) model has been shown to improve differentiation and enhance sodium absorption in other respiratory epithelia, we established an ALI model for ME cells.
Results: ME cells cultured under ALI conditions exhibited a fourfold increase in sodium absorption, which was not related to either a metabolic effect or to enhanced morphological differentiation, but instead to an increase in expression of the alpha-subunit of the epithelial sodium channel (alpha-ENaC).