Genetic relationships within Brassica rapa as inferred from AFLP fingerprints

Theor Appl Genet. 2005 May;110(7):1301-14. doi: 10.1007/s00122-005-1967-y. Epub 2005 Apr 2.

Abstract

Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of 96 accessions, representing mainly leafy vegetable types cultivated in China. On the basis of the AFLP data obtained, we constructed phenetic trees using MEGA 2.1: software. The level of polymorphism was very high, and it was evident that the amount of genetic variation present within the groups was often comparable to the variation between the different cultivar groups. Cluster analysis revealed groups, often with low bootstrap values, which coincided with cultivar groups. The most interesting information revealed by the phenetic trees was that different morphotypes are often more related to other morphotypes from the same region (East Asia vs. Europe) than to similar morphotypes from different regions, suggesting either an independent origin and or a long and separate domestication and breeding history in both regions.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassica rapa / genetics*
  • Cluster Analysis
  • Genetic Variation*
  • Geography
  • Nucleic Acid Amplification Techniques
  • Phenotype*
  • Polymorphism, Restriction Fragment Length
  • Species Specificity