Tolerance induction of autoreactive T cells against pancreatic beta cell-specific autoantigens such as glutamic acid decarboxylase 65 (GAD65) and insulin has been attempted as a method to prevent autoimmune diabetes. In this study, we investigate whether adenoassociated virus (AAV) gene delivery of multiple immunodominant epitopes expressing GAD(500-585) could induce potent immune tolerance and persistently suppress autoimmune diabetes in NOD mice. A single muscle injection of 7-wk-old female NOD mice with rAAV/GAD(500-585) (3 x 10(11) IU/mouse) quantitatively reduced pancreatic insulitis and efficiently prevented the development of overt type I diabetes. This prevention was marked by the inactivation of GAD(500-585)-responsive T lymphocytes, the enhanced GAD(500-585)-specific Th2 response (characterized by increased IL-4, IL-10 production, and decreased IFN-gamma production; especially elevated anti-GAD(500-585) IgG1 titer; and relatively unchanged anti-GAD(500-585) IgG2b titer), the increased secretion of TGF-beta, and the production of protective regulatory cells. Our studies also revealed that peptides 509-528, 570-585, and 554-546 in the region of GAD(500-585) played important roles in rAAV/GAD(500-585) immunization-induced immune tolerance. These data indicate that using AAV, a vector with advantage for therapeutic gene delivery, to transfer autoantigen peptide GAD(500-585), can induce immunological tolerance through active suppression of effector T cells and prevent type I diabetes in NOD mice.