Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.