Chemistry of the diazeniumdiolates: Z right harpoon over left harpoon E isomerism

J Am Chem Soc. 2005 Apr 20;127(15):5388-95. doi: 10.1021/ja042258l.

Abstract

Here, we explore the chemistry of the previously undocumented E form of diazeniumdiolates having the structure R(1)R(2)NN(O)=NOR(3). Reported crystallographic studies have uniformly revealed the Z configuration, and our attempts to observe a Z --> E conversion through thermal equilibration or photochemical means have, until now, consistently failed to reveal a significant amount of a second conformer. As a typical example, the NMR spectrum of trimethyl derivative Me(2)NN(O)=NOMe revealed no evidence for a second configuration. Electronic structure calculations attribute this finding to a prohibitively high interconversion barrier of approximately 40 kcal/mol. A similar result was obtained when we considered the case of R(1) = Me = R(3) and R(2) = H at the same levels of theory. However, when MeHNN(O)=NOMe was ionized by dissociating the N-H bond, the barrier was calculated to be lower by approximately 20 kcal/mol, with the E form of the anion being favored over Z. This circumstance suggested that an E isomer might be isolable if a Z anion were formed and given sufficient time to assume the E configuration, then quenched by reaction with an electrophile to trap and neutralize the E form and restore the putatively high interconversion barrier. Consistent with this prediction, basifying iPrHNN(O)=NOCH(2)CH(2)Br rapidly led to a six-membered heterocycle that was crystallographically characterized as containing the -N(O)=NO- functional group in the E configuration. The results suggest an approach for generating pairs of Z and E diazeniumdiolates for systematic comparison of the rates at which the individual isomers release bioactive NO and of other physicochemical determinants of their biomedical utility.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Azo Compounds / chemistry*
  • Crystallography, X-Ray
  • Isomerism
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Structure
  • Thermodynamics

Substances

  • Azo Compounds
  • diazeniumdiolate