Human papillomavirus (HPV) infections play a crucial role in the progress of cervical cancer. The high-risk HPV types are frequently associated with the development of malignant lesions. Some of the latest studies have demonstrated that the high-risk HPV 16 and 18 are predominantly detected in the more aggressive cancers. In the present study, we aimed to establish the proteomic profiles and characterization of the tumor related proteins by using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). For proteomic analysis, patients infected by HPV 16 or 18 were included in this study. We compared nuclear protein and cytoplasmic protein, separately by using the subcellular fraction. Differential protein spots between cervical cancer with high-risk HPV, HPV 16 or HPV 18, and HaCaT cell lines were characterized by 2-DE. Those proteins analyzed by peptide mass fingerprinting based on MALDI-TOF MS and database searching were the products of oncogenes or proto-oncogenes, and the others were involved in the regulation of cell cycle, for general genomic stability, telomerase activation, and cell immortalization. However, there was no difference in protein characterization for cervical cancer between HPV 16 and HPV 18 infection. Nonetheless, these data are valuable for the mass identification of differentially expressed proteins involved in human uterine cervical cancer. Moreover, the data has enormous value for establishing the human uterine cervical cancer proteome database that can be used in screening a molecular marker for the further study of human uterine cervical cancer, and also for studying any correlation among the cancers induced by HPV.