Dose calculations in multiseed brachytherapy implants are done by adding the contribution of each individual seed and by assuming that radiation from each seed is unaffected by the presence of the other seeds. To test the validity of this assumption, dose measurements with various configurations of multiseed implants of 125I model 6702 and 125I model 6711 sources were performed. For a linear configuration of three 125I model 6702 seeds at 1-cm separation, with their transverse axes coincident, doses at distances of 3.05 and 5.09 cm from the center along the transverse axis were found to be about 8% lower than the sum of doses from the three individual seeds. However, for three seeds at 1-cm intervals with their longitudinal axes coincident, doses at 3.05 and 5.09 cm distances from the center along the longitudinal axis were found to be about equal to the dose sums from individual seeds. These initial experiments indicated that the magnitude of the interseed effect depends upon the orientation of the seed relative to each other in an implant. To evaluate the importance of this interseed effect for multiseed configurations of 125I model 6702 and 125I model 6711 seeds, dose rates at various distances from a two-plane implant (each plane containing a 3 x 3 array of sources in a 1-cm spacing square grid) were measured in a Solid Water phantom with LiF TLDs. These measurements were carried out in two different planes at different orientations relative to the implant. The average values of the interseed effect at distances ranging from 1 to 7 cm outside the implant were observed to be about the same for 125I model 6702 and model 6711 sources. The mean value of the interseed effect was 6% and the maximum was 12%. On the whole, the interseed effect reduces the dose at the periphery of the iodine implant by 6%.