This study investigated the functional neuroanatomical correlates of spatial attention impairments in autism spectrum disorders (ASD) using an event-related functional magnetic resonance imaging (FMRI) design. Eight ASD participants and 8 normal comparison (NC) participants were tested with a task that required stimulus discrimination following a spatial cue that preceded target presentation by 100 msec (short interstimulus interval [ISI]) or 800 msec (long ISI). The ASD group showed significant behavioral spatial attention impairment in the short ISI condition. The FMRI results showed a reduction in activity within frontal, parietal, and occipital regions in ASD relative to the NC group, most notably within the inferior parietal lobule. ASD behavioral performance improved in the long ISI condition but was still impaired relative to the NC group. ASD FMRI activity in the long ISI condition suggested that the rudimentary framework of normal attention networks were engaged in ASD including bilateral activation within the frontal, parietal, and occipital lobes. Notable activation increases were observed in the superior parietal lobule and extrastriate cortex. No reliable activation was observed in the posterior cerebellar vermis in ASD participants during either long or short ISI conditions. In addition, no frontal activation during short ISI and severely reduced frontal activation during long ISI was observed in the ASD group. Taken together, these findings suggest a dysfunctional cerebello-frontal spatial attention system in ASD. The pattern of findings suggests that ASD is associated with a profound deficit in automatic spatial attention abilities and abnormal voluntary spatial attention abilities. This article also describes a method for reducing the contribution of physical eye movements to the blood-oxygenation level dependent activity in studies of ASD.