[reaction: see text] Substituent effects on the ring-opening reactions of 2-aziridinylmethyl radicals were studied systematically for the first time utilizing the ONIOM(QCISD(T)/6-311+G(2d,2p):B3LYP/6-311+G(3df,2p)) method. It was found that various substituents on the nitrogen atom had a relatively small effect on the ring opening of the 2-aziridinylmethyl radical. A pi-acceptor substituent at the C(1) position reduced the energy barrier for C-C cleavage dramatically, but it increased the energy barrier for C-N cleavage significantly at the same time. When the C(1) substituent is alkyl, the ring opening should always strongly favor the C-N cleavage pathway, regardless of whether the N substituent is alkyl, aryl, or COR. When the C(1) substituent is CHO (or CO-alkyl, CO-aryl, or CO-OR but not CO-NR(2)), the ring opening strongly favors the C-C cleavage pathway, regardless of whether the N substituent is alkyl, aryl, or COR. When the C(1) substituent is aryl (or alkenyl or alkynyl), the ring opening should favor the C-C cleavage pathway if the N substituent is alkyl or COR. If both the C(1) substituent and the N substituent are aryl, the ring opening should proceed via both the C-C and C-N cleavage pathways. The solvent effect on the regioselectivity of the ring opening of the 2-aziridinylmethyl radicals was found to be very small. The substituent effects on C-C cleavage could be explained successfully by the spin-delocalization mechanism. For the substituent effects on C-N cleavage, an extraordinary through-bond pi-acceptor effect must be taken into account. Furthermore, studies on bicyclic 2-aziridinylmethyl radicals showed that the ring strain could also affect the regiochemistry of the ring-opening reactions.