The principal goal of this paper was to generate flax (Linum usitatissimum L.) plants with increased antioxidant properties. To accomplish this a vector containing a multigene construct was prepared, and transgenic plants overexpressing essential flavonoid biosynthesis pathway enzymes were generated and analyzed. The simultaneous expression of genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) resulted in a significant increase of flax antioxidant capacity. To investigate the determinants of higher antioxidant properties of transgenic plants, the phenolic acids and lignans compound contents were measured. In both green part and seed extracts from transgenic plants, the phenolic acids level was increased when compared to the control. The calculated correlation coefficient between phenolic acids content and antioxidant capacity (0.82 and 0.70 for green part and flaxseed, respectively) perfectly reflects their strong relationship. The increase in yield of transgenic plants and their higher resistance to Fusarium culmorum and Fusarium oxysporum when compared to the control plants was a characteristic feature. It was assessed a very high correlation (correlation coefficient = 0.9) between phenolic acids level in flaxseed extract and resistance to F. culmorum. The flowering date of transgenic plants was approximately 3 weeks earlier than that of the control plants. Interestingly, a significant increase in monounsaturated fatty acids and a slight increase in lignans content accompanied the increase in antioxidant properties of flaxseeds.