As a treatment modality for malign and certain non-malignant diseases, photodynamic therapy (PDT) involves a two step protocol which consists of the (selective) uptake and accumulation of a photosensitizing agent in target cells and the subsequent irradiation with light in the visible range. Reactive oxygen species (ROS) produced during this process cause cellular damage and, depending on the treatment dose/severity of damage, lead to either cellular repair/survival, apoptotic cell death or necrosis. PDT-induced apoptosis has been focused on during the last years due to the intimate connection between ROS generation, mitochondria and apoptosis; by this PDT employs mechanisms different to those in the action of radio- and chemotherapeutics, giving rise to the chance of apoptosis induction by PDT even in cells resistant to conventional treatments. In this review, the (experimental) variables determining the cellular response after PDT and the known mechanistic details of PDT-triggered induction and execution of apoptosis are discussed. This is accompanied by a critical evaluation of wide-spread methods employed in apoptosis detection with special respect to in vitro/cell-based methodology.