Background: Hemostatic effects of the protease inhibitor aprotinin in cardiac surgery are well described, and recent evidence suggests an antithrombotic mechanism of aprotinin through inhibition of thrombin-mediated platelet activation. We hypothesized that aprotinin provides hemostasis while reducing vascular thrombosis by attenuating protease-dependent platelet function.
Methods: Rabbits (3 to 4 kg) underwent carotid artery thrombosis induced by electrical current. Treatment animals (n = 8) received aprotinin by a 100,000-KIU bolus followed by a continuous infusion (25,000 KIU/h). Control animals (n = 8) received crystalloid solution. Thrombus weight and time to thrombotic occlusion were determined. Platelet aggregation was examined in response to protease-dependent (thrombin) and protease-independent (adenosine diphosphate, ADP) platelet agonists. Platelet thrombin protease-activated receptor (PAR) expression was analyzed by Western blot. Ear bleeding time and abdominal incisional bleeding were measured at baseline and serially.
Results: Thrombus weight was decreased by aprotinin (6.1 +/- 1.1 mg versus 10.8 +/- 1.5 mg, aprotinin versus control, p < 0.05). Time to thrombotic occlusion was prolonged in the aprotinin group (17.4 +/- 1.0 minutes versus 8.3 +/- 1.3 minutes, p < 0.001). Rabbit platelet expression of thrombin PARs was demonstrated by Western blot analysis, and was not altered by aprotinin therapy. Platelet aggregation due to thrombin was decreased by aprotinin therapy (59.2% +/- 3.0% versus 95.8% +/- 1.5%, p < 0.001), whereas protease-independent, ADP-induced platelet aggregation was unchanged with aprotinin. Incisional bleeding was not different between groups. In the aprotinin group, bleeding time was unchanged at baseline and then reduced for the duration of the experiment (35.0 +/- 4.7 seconds versus 76.8 +/- 6.4 seconds, p < 0.05).
Conclusions: While providing hemostatic effects, aprotinin attenuates vascular thrombosis in part by inhibition of PAR activation, resulting in the prevention of thrombin-induced platelet aggregation.