A phagocytic cell line markedly improves survival of infected neutropenic mice

J Leukoc Biol. 2005 Aug;78(2):338-44. doi: 10.1189/jlb.0205072. Epub 2005 Apr 27.

Abstract

Disseminated candidiasis is a frequent infection in neutropenic patients, in whom it causes 50% mortality, despite antifungal therapy. As the duration of neutropenia is the strongest predictor of survival in neutropenic patients with invasive fungal infections, neutrophil transfusions are a logical, therapeutic option. However, significant technical barriers have prevented the clinical use of neutrophil transfusions. To overcome these barriers, we identified a human phagocytic cell line that could be administered to candidemic hosts in lieu of freshly harvested neutrophils. HL-60 cells killed Candida albicans in vitro. Activation of HL-60 cells with dimethyl sulfoxide and retinoic acid abrogated the cells' proliferation and augmented their killing of C. albicans. Administration of activated HL-60 cells to candidemic, neutropenic mice significantly improved survival (53% vs. 0%). Live HL-60 cells chemotaxed to sites of infection, phagocytized C. albicans, and reduced the fungal burden in key target organs. Although unactivated HL-60 cells also reduced tissue fungal burden in vivo, they did not improve survival as a result of their toxicity in infected mice. In contrast, no toxicity as a result of activated HL-60 cells was observed at up to 2 months of follow-up. To our knowledge, this is the first description of a cell line-based immunotherapy for an infectious disease. With further refinements, activated HL-60 cells have the potential to overcome the technical barriers to neutrophil transfusions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Analgesics, Non-Narcotic / pharmacology
  • Animals
  • Antineoplastic Agents / pharmacology
  • Candida albicans / immunology*
  • Candidiasis / immunology
  • Candidiasis / pathology
  • Candidiasis / therapy*
  • Cell Movement / drug effects
  • Cell Movement / immunology
  • Dimethyl Sulfoxide / pharmacology
  • HL-60 Cells / immunology
  • HL-60 Cells / transplantation
  • Humans
  • Immunotherapy, Adoptive* / methods
  • Mice
  • Mice, Inbred BALB C
  • Neutropenia / chemically induced
  • Neutropenia / microbiology*
  • Neutropenia / pathology
  • Neutrophils / immunology
  • Neutrophils / transplantation*
  • Tretinoin / pharmacology

Substances

  • Analgesics, Non-Narcotic
  • Antineoplastic Agents
  • Tretinoin
  • Dimethyl Sulfoxide