Collagen is the most abundant protein of mammals and produces highly organized ultrastructures in the extracellular matrix. There are at least 27 types of collagen in mammalian tissues. While fibrillar collagen (eg. types I, II, III, V and XI) assembles into large fibril structures in the extracellular matrix, type IV collagen produces meshwork-like structures in the basement membranes. As collagen has a distinct triple helix structure composed of Gly-X-Y repeats whose Y position is often hydroxyproline, its folding and maturation process differs considerably from globular proteins. Type I collagen is an assembly of two alpha-1 chains and one alpha-2 chain, and each of the alpha chains contain the N-terminal propeptide, C-terminal propeptide and central triple helical region. The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum (ER)-resident molecular chaperone that specifically recognizes the triple helical region of collagen and is required for productive folding and maturation of collagen molecules. Only in the presence of HSP47, collagen type I molecules can be assembled into the correctly folded triple helices in the ER of mouse embryos without producing misfolded or non-functionally aggregated molecules. HSP47-knockout embryos die just after 10.5 day due to the absence of functional collagen. Recent our data demonstrated that the non-fibrillar network-forming collagen type IV also requires HSP47 for productive folding and maturation. Here, we discuss the role of HSP47 in the folding and maturation of collagen type IV as well as type I.