The current goals for the therapy of children and adolescents with type 1 diabetes mellitus are to achieve near-normal glycemia, minimize the risk of severe hypoglycemia, limit excessive weight gain while achieving adequate growth, improve quality of life for both the patients and their families, and delay or prevent vascular complications. Insulin pump therapy provides a treatment option that can significantly aid in achieving all of these goals across all age ranges of pediatric patients. Continuous subcutaneous insulin infusion (CSII) pump therapy can provide greater flexibility in the timing of meals and snacks, has programmable basal rates to optimize overnight glycemic control, can reduce the risk of exercise-induced hypoglycemia, and enhances the ability of the patient and the family members to achieve acceptable diabetes control. In pediatric patients, CSII has been shown to reduce both glycosylated hemoglobin levels and the frequency of severe hypoglycemia without increasing the risk of diabetic ketoacidosis. The effectiveness of CSII, improvements in pump technology, and the availability of very rapid-acting insulin analogs have fueled a dramatic increase in the use of this therapy. This review presents practical guidelines for the selection of patients, initiation of treatment and patient education, as well as guidelines for use while exercising and at school. Keys to the success of CSII are to have a multidisciplinary team of clinicians who are expert in the care of children with diabetes, and patients and families who are able to carry out the tasks of intensive treatment, including self-monitoring of blood glucose levels, carbohydrate counting, and infusion pump management. Patients and parents need to be able to recognize and treat hypoglycemia, and prevent the development of ketoacidosis. School personnel need to be involved in the treatment plan and individual algorithms developed for periods of extra exercise and activity. The recent introduction of methods for continuous glucose monitoring provides a new means to optimize the basal and bolus capabilities of CSII and offers hope for the development of a feedback-controlled artificial pancreas.