Rationale: Asthma is a common respiratory disease with complex genetic components. We previously reported strong evidence for linkage between mite-sensitive asthma and markers on chromosome 5q33. This area of linkage includes a region homologous to a mouse area that contains a locus involved in regulation of airway hyperreactivity.
Objective: The aim of the present study is to identify asthma susceptibility genes on chromosome 5q33.
Methods and results: We performed mutation screening and association analyses of genes in the 9.4-Mb human linkage region. Transmission disequilibrium test analysis of 105 polymorphisms in 155 families with asthma revealed that six polymorphisms in cytoplasmic fragile X mental retardation protein (FMRP)-interacting protein 2 gene were associated significantly with the development of asthma (p = 0.000075; odds ratio, 5.9). These six polymorphisms were in complete linkage disequilibrium. In real-time quantitative polymerase chain reaction analysis, subjects homozygous for the haplotype overtransmitted to asthma-affected offspring showed significantly increased level of cytoplasmic FMRP interacting protein 2 gene expression in lymphocytes compared with ones heterozygous for the haplotype (p = 0.038).
Conclusions: Our data suggest that cytoplasmic FMRP interacting protein 2 are associated with the development of atopic asthma in humans, and that targeting cytoplasmic FMRP interacting protein 2 could be a novel strategy for treating atopic asthma.