The thermal expansion rate, coefficient of thermal expansion, and high temperature strength of two types of commercially available alloy for metal-bond porcelain, KIK-HII (KIK) and Degubond-J2 (J2), were evaluated up to the liquidus point temperature using a thermo-mechanical analyzer. Furthermore, microstructure in the solid-liquid coexisting region was observed for evaluation. Our results revealed the following findings: 1. For KIK, solidus point was 1,209.3 +/- 3.2 degrees C, liquidus point was 1,308.3 +/- 7.10 degrees C, and melting expansion rate was 0.41+/- 0.16%. 2. For J2, solidus point was 1,198.3 +/- 0.6 degrees C, liquidus point was 1,253.0 +/- 4.4 degrees C, and melting expansion rate was 4.50 +/- 0.80%. 3. At high temperature, the mechanical characteristics of KIK greatly differed from those of J2. The risk of causing deformation during porcelain baking was suggested for KIK. Removal of segregation during casting was considered difficult in J2.