The adsorption process is largely a surface-action phenomenon. In this study, sorption capacities for heavy metals on a solid waste matrix were investigated. Five heavy metals (iron, copper, zinc, nickel and cadmium) were chosen because of their availability in any landfill site. The conditions during all the experimental runs were pH 7.0, temperature 32 degrees C and suppressed microbial degradation. For adsorption isotherm (Freundlich and Langmuir) calculations, fixed quantities of heavy metal ions were mixed with variable quantities of solid waste. The ratio of mass of adsorbate per unit mass of adsorbent was changed five times, by changing only the adsorbent amount. The results showed that the time required to reach equilibrium varied from metal to metal but all reached equilibrium within the first 32 h. The relative potential of sorption of the individual metals and mixed metals on the solid waste matrix is Fe > Zn > Cu > Ni > Cd. The sorption capacity of domestic solid waste matrix for heavy metals is quite significant and this property might prove helpful for the in situ removal of heavy metals in landfill operation.