Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps/min, and the vertical acceleration of the head exhibits a dominant peak at this step frequency (2 Hz). These studies have been limited to short periods of walking along a predetermined path or on a treadmill, and whether such a highly tuned frequency of movement can be generalized to all forms of locomotion in a natural setting is unknown. The aim of this study was to determine whether humans exhibit a preferred cadence during extended periods of uninhibited locomotor activity and whether this step frequency is consistent with that observed in laboratory studies. Head linear acceleration was measured over a 10-h period in 20 subjects during the course of a day, which encompassed a broad range of locomotor (walking, running, cycling) and nonlocomotor (working at a desk, driving a car, riding a bus or subway) activities. Here we show a highly tuned resonant frequency of human locomotion at 2 Hz (SD 0.13) with no evidence of correlation with gender, age, height, weight, or body mass index. This frequency did not differ significantly from the preferred step frequency observed in the seminal laboratory study of Murray et al. (Murray MP, Drought AB, and Kory RC. J Bone Joint Surg 46A: 335-360, 1964). [1.95 Hz (SD 0.19)]. On the basis of the frequency characteristics of otolith-spinal reflexes, which drive lower body movement via the lateral vestibulospinal tract, and otolith-mediated collic and ocular reflexes that maintain gaze when walking, we speculate that this spontaneous tempo of locomotion represents some form of central "resonant frequency" of human movement.