We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1 x O3) or two-fold ambient (2 x O3) O3 concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO2 concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2 x O3 variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1 x O3 and 2 x O3 regimes were not observed. Glutathione concentrations were significantly increased under 2 x O3 across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2 x O3 without regard of tree age or canopy position.