We introduce a new approach for the localization of 3D anatomical point landmarks. This approach is based on 3D parametric intensity models which are directly fitted to 3D images. To efficiently model tip-like, saddle-like, and sphere-like anatomical structures we introduce analytic intensity models based on the Gaussian error function in conjunction with 3D rigid transformations as well as deformations. To select a suitable size of the region-of-interest (ROI) where model fitting is performed, we also propose a new scheme for automatic selection of an optimal 3D ROI size based on the dominant gradient direction. In addition, to achieve a higher level of automation we present an algorithm for automatic initialization of the model parameters. Our approach has been successfully applied to accurately localize anatomical landmarks in 3D synthetic data as well as 3D MR and 3D CT image data. We have also compared the experimental results with the results of a previously proposed 3D differential approach. It turns out that the new approach significantly improves the localization accuracy.