1'-Acetoxychavicol acetate (ACA) is a component of a traditional Asian condiment obtained from the rhizomes of the commonly used ethno-medicinal plant Languas galanga. Here, we show for the first time that ACA dramatically inhibits the cellular growth of human myeloma cells via the inhibition of nuclear factor kappaB (NF-kappaB) activity. In myeloma cells, cultivation with ACA induced G0-G1 phase cell cycle arrest, followed by apoptosis. Treatment with ACA induced caspase 3, 9, and 8 activities, suggesting that ACA-induced apoptosis in myeloma cells mediates both mitochondrial- and Fas-dependent pathways. Furthermore, we showed that ACA significantly inhibits the serine phosphorylation and degradation of IkappaBalpha. ACA rapidly decreased the nuclear expression of NF-kappaB, but increased the accumulation of cytosol NF-kappaB in RPMI8226 cells, indicating that ACA inhibits the translocation of NF-kappaB from the cytosol to the nucleus. To evaluate the effects of ACA in vivo, RPMI8226-transplanted NOD/SCID mice were treated with ACA. Tumor weight significantly decreased in the ACA-treated mice compared with the control mice. In conclusion, ACA has an inhibitory effect on NF-kappaB, and induces the apoptosis of myeloma cells in vitro and in vivo. ACA, therefore, provides a new biologically based therapy for the treatment of multiple myeloma patients as a novel NF-kappaB inhibitor.