The mammalian target of rapamycin (mTOR) coordinates cell growth with the growth factor and nutrient/energy status of the cell. The phosphatidylinositol 3-kinase-AKT pathway is centrally involved in the transmission of mitogenic signals to mTOR. Previous studies have shown that mTOR is a direct substrate for the AKT kinase and identified Ser-2448 as the AKT target site in mTOR. In this study, we demonstrate that rapamycin, a specific inhibitor of mTOR function, blocks serum-stimulated Ser-2448 phosphorylation and that this drug effect is not explained by the inhibition of AKT. Furthermore, the phosphorylation of Ser-2448 was dependent on mTOR kinase activity, suggesting that mTOR itself or a protein kinase downstream from mTOR was responsible for the modification of Ser-2448. Here we show that p70S6 kinase phosphorylates mTOR at Ser-2448 in vitro and that ectopic expression of rapamycin-resistant p70S6 kinase restores Ser-2448 phosphorylation in rapamycin-treated cells. In addition, we show that cellular amino acid status, which modulates p70S6 kinase (S6K1) activity via the TSC/Rheb pathway, regulates Ser-2448 phosphorylation. Finally, small interfering RNA-mediated depletion of p70S6 kinase reduces Ser-2448 phosphorylation in cells. Taken together, these results suggest that p70S6 kinase is a major effector of mTOR phosphorylation at Ser-2448 in response to both mitogen- and nutrient-derived stimuli.