Expression and membrane localization of MCT isoforms along the length of the human intestine

Am J Physiol Cell Physiol. 2005 Oct;289(4):C846-52. doi: 10.1152/ajpcell.00112.2005. Epub 2005 May 18.

Abstract

Recent studies from our laboratory and others have demonstrated the involvement of monocarboxylate transporter (MCT)1 in the luminal uptake of short-chain fatty acids (SCFAs) in the human intestine. Functional studies from our laboratory previously demonstrated kinetically distinct SCFA transporters on the apical and basolateral membranes of human colonocytes. Although apical SCFA uptake is mediated by the MCT1 isoform, the molecular identity of the basolateral membrane SCFA transporter(s) and whether this transporter is encoded by another MCT isoform is not known. The present studies were designed to assess the expression and membrane localization of different MCT isoforms in human small intestine and colon. Immunoblotting was performed with the purified apical and basolateral membranes from human intestinal mucosa obtained from organ donor intestine. Immunohistochemistry studies were done on paraffin-embedded sections of human colonic biopsy samples. Immunoblotting studies detected a protein band of approximately 39 kDa for MCT1, predominantly in the apical membranes. The relative abundance of MCT1 mRNA and protein increased along the length of the human intestine. MCT4 (54 kDa) and MCT5 (54 kDa) isoforms showed basolateral localization and were highly expressed in the distal colon. Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes. We speculate that distinct MCT isoforms may be involved in SCFA transport across the apical or basolateral membranes in polarized colonic epithelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Membrane / metabolism*
  • Gene Expression*
  • Humans
  • Intestinal Mucosa / metabolism*
  • Monocarboxylic Acid Transporters / metabolism*
  • Protein Isoforms
  • RNA, Messenger / metabolism
  • Symporters / metabolism*

Substances

  • Monocarboxylic Acid Transporters
  • Protein Isoforms
  • RNA, Messenger
  • Symporters
  • monocarboxylate transport protein 1