Nrf2 binds to the antioxidant response element and regulates expression and antioxidant induction of a battery of chemopreventive genes. In this study, we have identified nuclear import and export signals of Nrf2 and show that the nuclear import and export of Nrf2 is regulated by antioxidants. We demonstrate that Nrf2 contains a bipartite nuclear localization signal (NLS) and a leucine-rich nuclear export signal, which regulate Nrf2 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nrf2 accumulates in the nucleus within 15 min of antioxidant treatment and is exported out of nucleus by 8 h after treatment. Nrf2 mutant lacking the NLS failed to enter the nucleus and displayed diminished expression and induction of the downstream NAD(P)H:quinone oxidoreductase 1 gene. The Nrf2 NLS sequence, when fused to green fluorescence protein, resulted in the nuclear accumulation of green fluorescence protein, indicating that this signal sequence was sufficient to direct nuclear localization of Nrf2. A nuclear export signal (NES) was characterized in the C terminus of Nrf2, the deletion of which caused Nrf2 to accumulate predominantly in the nucleus. The Nrf2 NES was sensitive to leptomycin B and could function as an independent export signal when fused to a heterologous protein. Further studies demonstrate that NES-mediated nuclear export of Nrf2 is required for degradation of Nrf2 in the cytosol. These results led to the conclusion that Nrf2 localization between cytosol and nucleus is controlled by both nuclear import and export of Nrf2, and the overall distribution of Nrf2 is probably the result from a balance between these two processes. Antioxidants change this balance in favor of nuclear accumulation of Nrf2, leading to activation of chemopreventive proteins. Once this is achieved, Nrf2 exits the nucleus for binding to INrf2 and degradation.