Xenon and tin both are working elements applied in discharge plasmas that are being developed for application in extreme ultraviolet (EUV) lithography. Their spectra in the 10-21-nm-wavelength range have been analyzed. A fully analytical collisional-radiative model, including departure from equilibrium due to a net ionization rate, was used to simulate the EUV spectra. Detailed Hartree-Fock calculations, using the COWAN package, were applied for determination of the energy levels and optical transition probabilities of the 8+ to 12+ ions of both elements. For the calculation of the radiation, the opacity of the plasma was taken into account. Time-resolved measurements of the spectra from ionizing phases of two different discharge plasmas were corrected for the wavelength-dependent sensitivity of the spectrometer, and compared to the results of the simulations. Fairly good agreement between the experiments and the model calculations has been found.